Please enter the search related information in the fields below. Partial information works, e.g. "SP-21" in the "tdoc" field lists all TSG SA documents from 2021. Regular expressions mostly work in all fields (e.g. "2[34].501" in the "Spec" field lists all documents related to 23.501 and 24.501. Capitalization is disregarded, i.e. "3GPP" gives the same results as "3gpp".

Download results in JSON format

tdoc Title Type / Revs Source Spec / CR S/WID Release Meeting Status Links
S2-2201919 LS from 5GAA: LS on Enhancements on QoS Sustainability analytics in the context of the Study on Enablers for Network Automation for 5G - phase 3 (FS_eNA_Ph3) LS in

source LS: 5GAA_S-210186

LS To: SA WG2

LS reply in S2-2203370, S2-2203370

revision of S2-2200016

5GAA S2-150-e

AI: 9.23

replied to [WTS] [JSN]
S2-2201992 New solution for NWDAF assisted URSP determination. pCR

revised to S2-2203368

China Telecom, Ericsson 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202025 KI#7, New Sol: Enhanced QoS Sustainability Analytics. pCR

revised to S2-2203371

Tencent, Tencent Cloud 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202041 Solution for KI#8 to support Federated Learning between NWDAFs. pCR

revised to S2-2203373

Qualcomm Incorporated 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202042 Solution for KI#9: Support to collect finer granularity of Location Information to NWDAF. pCR Qualcomm Incorporated 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202062 New Solution on KI#1: Detect and Improve correctness of NWDAF analytics. pCR Huawei, HiSilicon 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202087 New Key Issue on Study Whether and How Interactions between NWDAF can Leverage MDAS/MDAF Functionality for Analytics. pCR Ericsson 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202098 KI#1: New Solution for Detection of ML Model Degradation. pCR

revised to S2-2203866

Ericsson 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202099 KI#1: New Solution for Improving Correctness of Analytics Based on the Use of Multiple ML Models. pCR

revised to S2-2203354

Ericsson 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202100 KI#3: New Solution for Data and Analytics Exchange in Roaming Case. pCR

revised to S2-2203363

Ericsson 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202121 Architecture assumption update for FS_eNA_Ph3. pCR

revised to S2-2203352

Huawei, HiSilicon 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202122 [DRAFT] Reply LS on Enhancements on QoS Sustainability analytics LS out

LS To: 5GAA

revised to S2-2203370

Huawei, HiSilicon FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202123 New Solution for KI#2: NWDAF-assisted application detection. pCR

revised to S2-2203361

Huawei, HiSilicon 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202124 New Solution for KI#3: Data collection and analytics by H-NWDAF in roaming case. pCR Huawei, HiSilicon 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202125 Solution on KI#7: Enhanced QoS Sustainability Analytics. pCR

revised to S2-2203372

Huawei, HiSilicon 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202179 KI#9: New solution on relative proximity analytics. pCR

revised to S2-2203379

Samsung 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202232 KI 4: Solution -Trained ML models storage and retrieval from ADRF. pCR Intel 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202233 KI5: Solution - NWDAF MTLF and NWDAF AnLF interoperability support for registration and discovery in 5GC. pCR

revised to S2-2203365

Intel 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202249 KI#1: New Solution - Improving the Correctness of Service Experience Predictions with Contribution Weights. pCR

revised to S2-2203355

InterDigital Inc. 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202308 New Solution on NWDAF-assisted application detection. pCR Samsung 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

merged [WTS] [JSN]
S2-2202310 New Solution on data and analytics exchange for roaming UEs. pCR Samsung 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202313 Solution for KI#1: Enhanced ML model provisioning. pCR CATT 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202314 Solution for KI#3: PDU session management in roaming scenarios using network analytics. pCR CATT 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2202315 Solution for KI#3#6: NSSP in roaming scenarios using network analytics. pCR

revised to S2-2203369

CATT 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202316 Solution for KI#3: Architecture for network analytics in roaming scenarios. pCR CATT 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202318 Solution for KI #8: Federated Learning Group creation. pCR

revised to S2-2203374

Samsung 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202338 [DRAFT] LS on Location Granularity of RAN inputs to OAM and NWDAF LS out

LS To: RAN WG3, SA WG5

revised to S2-2203819

Huawei, HiSilicon FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

postponed [WTS] [JSN]
S2-2202383 FS_eNA_Ph3, KI#1, New solution for improving NWDAF correctness. pCR

revised to S2-2203356

Vivo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202384 FS_eNA_Ph3, KI#3, New solution for data or analytics exchange in roaming scenario. pCR

revised to S2-2204010

Vivo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202385 FS_eNA_Ph3, KI#5, New solution for model sharing. pCR

revised to S2-2203366

Vivo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202386 FS_eNA_Ph3, KI#8, New solution for Federal ML. pCR

revised to S2-2204014

Vivo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202387 FS_eNA_Ph3, KI#6, New solution for PCF re-evaluates the URSP rules according to NWDAF's analytics. pCR

revised to S2-2204013

Vivo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202388 KI#9, New Sol: Outdoors Advertisement use case with finer granularity location information. pCR

revised to S2-2203377

Vivo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202427 Solution for KI#8: Support of federated learning for model training. pCR

revised to S2-2203375

Lenovo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202438 Solution for KI#1: Determining ML model drift for improving analytics accuracy. pCR

revised to S2-2203357

Lenovo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202442 KI#1: New solution for improving NWDAF correctness. pCR

revised to S2-2203358

ETRI 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202468 Solution for ML model sharing with different service provider's AnLF. pCR

revised to S2-2203367

NTT DOCOMO 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202470 Solution on finer granular location information based on LCS input data. pCR

revised to S2-2203780

NTT DOCOMO 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202559 Solution for NWDAF assisted URSP enforcement analytics. pCR OPPO 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

noted [WTS] [JSN]
S2-2202616 KI#6, New Sol: Support NWDAF-assisted URSP. pCR Samsung 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202633 New Solution on Horizontal Federated Learning among Multiple NWDAFs Instances. pCR

revised to S2-2203376

China Mobile 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202638 New Solution on NWDAF-assisted application detection. pCR

revised to S2-2203362

China Mobile 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202640 New KI: Interactions between NWDAF and MDAF for data collection and analytics. pCR China Mobile 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202646 New Solution on enhancements on QoS Sustainability analytics. pCR China Mobile 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202665 FS_eNA_Ph3 New Solution to KI#3. pCR ZTE 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202683 New Solution on ML Model storage in ADRF. pCR China Mobile 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202690 New Solution on DCCF relocation. pCR China Mobile 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202693 New Solution on correctness improvement by determining ML model performance. pCR

revised to S2-2203359

China Mobile 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202694 TR 23.700-81: KI#9 - Solution for finer granularity of location information. pCR

revised to S2-2203378

TOYOTA MOTOR CORPORATION 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202722 Solution for KI#9: Supporting UE mobility analytics with finer granularity than TA/cell. pCR Lenovo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202806 KI #3 solution proposal. pCR

revised to S2-2203975

Nokia, Nokia Shanghai Bell 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

not treated [WTS] [JSN]
S2-2202873 Solution proposal: KI#4: Data Collection and Storage Enhancements. pCR

revised to S2-2203364

Nokia, Nokia Shanghai Bell 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202883 KI proposal: KI for WT#3.4. pCR

revised to S2-2203353

Nokia, Nokia Shanghai Bell 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202886 Solution proposals: KI#1 How to improve correctness of NWDAF analytics. pCR Nokia, Nokia Shanghai Bell 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

revised [WTS] [JSN]
S2-2202983 KI#7, New Sol: QoS Sustainability analytics enhanced with additional input data for UL/DL throughput KPI. pCR Orange 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203352 Architecture assumption update for FS_eNA_Ph3. pCR

revision of S2-2202121

Huawei, HiSilicon 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203353 KI proposal: KI for WT#3.4. pCR

revision of S2-2202883

Nokia, Nokia Shanghai Bell 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203354 KI#1: New Solution for Improving Correctness of Analytics Based on the Use of Multiple ML Models. pCR

revision of S2-2202099

Ericsson 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203355 KI#1: New Solution - Improving the Correctness of Service Experience Predictions with Contribution Weights. pCR

revision of S2-2202249

InterDigital Inc. 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203356 FS_eNA_Ph3, KI#1, New solution for improving NWDAF correctness. pCR

revision of S2-2202383

Vivo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203357 Solution for KI#1: Determining ML model drift for improving analytics accuracy. pCR

revision of S2-2202438

Lenovo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203358 KI#1: New solution for improving NWDAF correctness. pCR

revision of S2-2202442

ETRI 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203359 New Solution on correctness improvement by determining ML model performance. pCR

revision of S2-2202693

China Mobile 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203360 Solution proposals: KI#1 How to improve correctness of NWDAF analytics. pCR

revision of SP-211646

Nokia, Nokia Shanghai Bell 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203361 New Solution for KI#2: NWDAF-assisted application detection. pCR

revision of S2-2202123

Huawei, HiSilicon 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203362 New Solution on NWDAF-assisted application detection. pCR

revision of S2-2202638

China Mobile 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203363 KI#3: New Solution for Data and Analytics Exchange in Roaming Case. pCR

revision of S2-2202100

Ericsson 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203364 Solution proposal: KI#4: Data Collection and Storage Enhancements. pCR

revision of S2-2202873

Nokia, Nokia Shanghai Bell 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203365 KI5: Solution - NWDAF MTLF and NWDAF AnLF interoperability support for registration and discovery in 5GC. pCR

revision of S2-2202233

Intel 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203366 FS_eNA_Ph3, KI#5, New solution for model sharing. pCR

revision of S2-2202385

Vivo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203367 Solution for ML model sharing with different service provider's AnLF. pCR

revision of S2-2202468

NTT DOCOMO 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203368 New solution for NWDAF assisted URSP determination. pCR

revision of S2-2201992

China Telecom, Ericsson 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203369 Solution for KI#3#6: NSSP in roaming scenarios using network analytics. pCR

revision of S2-2202315

CATT 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203370 [DRAFT] Reply LS on Enhancements on QoS Sustainability analytics LS out

LS is reply to S2-2201919

LS To: 5GAA

revision of S2-2202122

Huawei, HiSilicon FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203371 KI#7, New Sol: Enhanced QoS Sustainability Analytics. pCR

revision of S2-2202025

Tencent, Tencent Cloud 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203372 Solution on KI#7: Enhanced QoS Sustainability Analytics. pCR

revision of S2-2202125

Huawei, HiSilicon 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203373 Solution for KI#8 to support Federated Learning between NWDAFs. pCR

revision of S2-2202041

Qualcomm Incorporated 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203374 Solution for KI #8: Federated Learning Group creation. pCR

revision of S2-2202318

Samsung 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203375 Solution for KI#8: Support of federated learning for model training. pCR

revision of S2-2202427

Lenovo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203376 New Solution on Horizontal Federated Learning among Multiple NWDAFs Instances. pCR

revision of S2-2202633

China Mobile 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203377 KI#9, New Sol: Outdoors Advertisement use case with finer granularity location information. pCR

revision of S2-2202388

Vivo 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203378 TR 23.700-81: KI#9 - Solution for finer granularity of location information. pCR

revision of S2-2202694

TOYOTA MOTOR CORPORATION 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]
S2-2203379 KI#9: New solution on relative proximity analytics. pCR

revision of S2-2202179

Samsung 23.700-81 0.1.0 FS_eNA_Ph3 Rel-18 S2-150-e

AI: 9.23

approved [WTS] [JSN]

83 documents (0.33122777938843 seconds)