Please enter the search related information in the fields below. Partial information works, e.g. "SP-21
" in the "tdoc" field lists all TSG SA documents from 2021. Regular expressions mostly work in all fields (e.g. "2[34].501
" in the "Spec" field lists all documents related to 23.501 and 24.501. Capitalization is disregarded, i.e. "3GPP
" gives the same results as "3gpp
".
Download results in JSON format
tdoc | Title | Type / Revs | Source | Spec / CR | S/WID | Release | Meeting | Status | Links |
---|---|---|---|---|---|---|---|---|---|
S2-2201919 | LS from 5GAA: LS on Enhancements on QoS Sustainability analytics in the context of the Study on Enablers for Network Automation for 5G - phase 3 (FS_eNA_Ph3) |
LS in source LS: 5GAA_S-210186 LS To: SA WG2 LS reply in S2-2203370, S2-2203370 revision of S2-2200016 |
5GAA |
S2-150-e AI: 9.23 |
replied to | [WTS] [JSN] | |||
S2-2201992 | New solution for NWDAF assisted URSP determination. |
pCR revised to S2-2203368 |
China Telecom, Ericsson | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202025 | KI#7, New Sol: Enhanced QoS Sustainability Analytics. |
pCR revised to S2-2203371 |
Tencent, Tencent Cloud | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202041 | Solution for KI#8 to support Federated Learning between NWDAFs. |
pCR revised to S2-2203373 |
Qualcomm Incorporated | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202042 | Solution for KI#9: Support to collect finer granularity of Location Information to NWDAF. | pCR | Qualcomm Incorporated | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202062 | New Solution on KI#1: Detect and Improve correctness of NWDAF analytics. | pCR | Huawei, HiSilicon | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202087 | New Key Issue on Study Whether and How Interactions between NWDAF can Leverage MDAS/MDAF Functionality for Analytics. | pCR | Ericsson | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202098 | KI#1: New Solution for Detection of ML Model Degradation. |
pCR revised to S2-2203866 |
Ericsson | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202099 | KI#1: New Solution for Improving Correctness of Analytics Based on the Use of Multiple ML Models. |
pCR revised to S2-2203354 |
Ericsson | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202100 | KI#3: New Solution for Data and Analytics Exchange in Roaming Case. |
pCR revised to S2-2203363 |
Ericsson | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202121 | Architecture assumption update for FS_eNA_Ph3. |
pCR revised to S2-2203352 |
Huawei, HiSilicon | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202122 | [DRAFT] Reply LS on Enhancements on QoS Sustainability analytics |
LS out LS To: 5GAA revised to S2-2203370 |
Huawei, HiSilicon | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] | |
S2-2202123 | New Solution for KI#2: NWDAF-assisted application detection. |
pCR revised to S2-2203361 |
Huawei, HiSilicon | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202124 | New Solution for KI#3: Data collection and analytics by H-NWDAF in roaming case. | pCR | Huawei, HiSilicon | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202125 | Solution on KI#7: Enhanced QoS Sustainability Analytics. |
pCR revised to S2-2203372 |
Huawei, HiSilicon | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202179 | KI#9: New solution on relative proximity analytics. |
pCR revised to S2-2203379 |
Samsung | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202232 | KI 4: Solution -Trained ML models storage and retrieval from ADRF. | pCR | Intel | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202233 | KI5: Solution - NWDAF MTLF and NWDAF AnLF interoperability support for registration and discovery in 5GC. |
pCR revised to S2-2203365 |
Intel | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202249 | KI#1: New Solution - Improving the Correctness of Service Experience Predictions with Contribution Weights. |
pCR revised to S2-2203355 |
InterDigital Inc. | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202308 | New Solution on NWDAF-assisted application detection. | pCR | Samsung | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
merged | [WTS] [JSN] |
S2-2202310 | New Solution on data and analytics exchange for roaming UEs. | pCR | Samsung | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202313 | Solution for KI#1: Enhanced ML model provisioning. | pCR | CATT | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202314 | Solution for KI#3: PDU session management in roaming scenarios using network analytics. | pCR | CATT | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2202315 | Solution for KI#3#6: NSSP in roaming scenarios using network analytics. |
pCR revised to S2-2203369 |
CATT | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202316 | Solution for KI#3: Architecture for network analytics in roaming scenarios. | pCR | CATT | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202318 | Solution for KI #8: Federated Learning Group creation. |
pCR revised to S2-2203374 |
Samsung | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202338 | [DRAFT] LS on Location Granularity of RAN inputs to OAM and NWDAF |
LS out LS To: RAN WG3, SA WG5 revised to S2-2203819 |
Huawei, HiSilicon | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
postponed | [WTS] [JSN] | |
S2-2202383 | FS_eNA_Ph3, KI#1, New solution for improving NWDAF correctness. |
pCR revised to S2-2203356 |
Vivo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202384 | FS_eNA_Ph3, KI#3, New solution for data or analytics exchange in roaming scenario. |
pCR revised to S2-2204010 |
Vivo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202385 | FS_eNA_Ph3, KI#5, New solution for model sharing. |
pCR revised to S2-2203366 |
Vivo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202386 | FS_eNA_Ph3, KI#8, New solution for Federal ML. |
pCR revised to S2-2204014 |
Vivo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202387 | FS_eNA_Ph3, KI#6, New solution for PCF re-evaluates the URSP rules according to NWDAF's analytics. |
pCR revised to S2-2204013 |
Vivo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202388 | KI#9, New Sol: Outdoors Advertisement use case with finer granularity location information. |
pCR revised to S2-2203377 |
Vivo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202427 | Solution for KI#8: Support of federated learning for model training. |
pCR revised to S2-2203375 |
Lenovo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202438 | Solution for KI#1: Determining ML model drift for improving analytics accuracy. |
pCR revised to S2-2203357 |
Lenovo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202442 | KI#1: New solution for improving NWDAF correctness. |
pCR revised to S2-2203358 |
ETRI | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202468 | Solution for ML model sharing with different service provider's AnLF. |
pCR revised to S2-2203367 |
NTT DOCOMO | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202470 | Solution on finer granular location information based on LCS input data. |
pCR revised to S2-2203780 |
NTT DOCOMO | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202559 | Solution for NWDAF assisted URSP enforcement analytics. | pCR | OPPO | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
noted | [WTS] [JSN] |
S2-2202616 | KI#6, New Sol: Support NWDAF-assisted URSP. | pCR | Samsung | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202633 | New Solution on Horizontal Federated Learning among Multiple NWDAFs Instances. |
pCR revised to S2-2203376 |
China Mobile | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202638 | New Solution on NWDAF-assisted application detection. |
pCR revised to S2-2203362 |
China Mobile | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202640 | New KI: Interactions between NWDAF and MDAF for data collection and analytics. | pCR | China Mobile | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202646 | New Solution on enhancements on QoS Sustainability analytics. | pCR | China Mobile | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202665 | FS_eNA_Ph3 New Solution to KI#3. | pCR | ZTE | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202683 | New Solution on ML Model storage in ADRF. | pCR | China Mobile | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202690 | New Solution on DCCF relocation. | pCR | China Mobile | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202693 | New Solution on correctness improvement by determining ML model performance. |
pCR revised to S2-2203359 |
China Mobile | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202694 | TR 23.700-81: KI#9 - Solution for finer granularity of location information. |
pCR revised to S2-2203378 |
TOYOTA MOTOR CORPORATION | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202722 | Solution for KI#9: Supporting UE mobility analytics with finer granularity than TA/cell. | pCR | Lenovo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202806 | KI #3 solution proposal. |
pCR revised to S2-2203975 |
Nokia, Nokia Shanghai Bell | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
not treated | [WTS] [JSN] |
S2-2202873 | Solution proposal: KI#4: Data Collection and Storage Enhancements. |
pCR revised to S2-2203364 |
Nokia, Nokia Shanghai Bell | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202883 | KI proposal: KI for WT#3.4. |
pCR revised to S2-2203353 |
Nokia, Nokia Shanghai Bell | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202886 | Solution proposals: KI#1 How to improve correctness of NWDAF analytics. | pCR | Nokia, Nokia Shanghai Bell | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
revised | [WTS] [JSN] |
S2-2202983 | KI#7, New Sol: QoS Sustainability analytics enhanced with additional input data for UL/DL throughput KPI. | pCR | Orange | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203352 | Architecture assumption update for FS_eNA_Ph3. |
pCR revision of S2-2202121 |
Huawei, HiSilicon | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203353 | KI proposal: KI for WT#3.4. |
pCR revision of S2-2202883 |
Nokia, Nokia Shanghai Bell | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203354 | KI#1: New Solution for Improving Correctness of Analytics Based on the Use of Multiple ML Models. |
pCR revision of S2-2202099 |
Ericsson | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203355 | KI#1: New Solution - Improving the Correctness of Service Experience Predictions with Contribution Weights. |
pCR revision of S2-2202249 |
InterDigital Inc. | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203356 | FS_eNA_Ph3, KI#1, New solution for improving NWDAF correctness. |
pCR revision of S2-2202383 |
Vivo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203357 | Solution for KI#1: Determining ML model drift for improving analytics accuracy. |
pCR revision of S2-2202438 |
Lenovo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203358 | KI#1: New solution for improving NWDAF correctness. |
pCR revision of S2-2202442 |
ETRI | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203359 | New Solution on correctness improvement by determining ML model performance. |
pCR revision of S2-2202693 |
China Mobile | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203360 | Solution proposals: KI#1 How to improve correctness of NWDAF analytics. |
pCR revision of SP-211646 |
Nokia, Nokia Shanghai Bell | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203361 | New Solution for KI#2: NWDAF-assisted application detection. |
pCR revision of S2-2202123 |
Huawei, HiSilicon | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203362 | New Solution on NWDAF-assisted application detection. |
pCR revision of S2-2202638 |
China Mobile | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203363 | KI#3: New Solution for Data and Analytics Exchange in Roaming Case. |
pCR revision of S2-2202100 |
Ericsson | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203364 | Solution proposal: KI#4: Data Collection and Storage Enhancements. |
pCR revision of S2-2202873 |
Nokia, Nokia Shanghai Bell | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203365 | KI5: Solution - NWDAF MTLF and NWDAF AnLF interoperability support for registration and discovery in 5GC. |
pCR revision of S2-2202233 |
Intel | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203366 | FS_eNA_Ph3, KI#5, New solution for model sharing. |
pCR revision of S2-2202385 |
Vivo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203367 | Solution for ML model sharing with different service provider's AnLF. |
pCR revision of S2-2202468 |
NTT DOCOMO | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203368 | New solution for NWDAF assisted URSP determination. |
pCR revision of S2-2201992 |
China Telecom, Ericsson | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203369 | Solution for KI#3#6: NSSP in roaming scenarios using network analytics. |
pCR revision of S2-2202315 |
CATT | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203370 | [DRAFT] Reply LS on Enhancements on QoS Sustainability analytics |
LS out LS is reply to S2-2201919 LS To: 5GAA revision of S2-2202122 |
Huawei, HiSilicon | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] | |
S2-2203371 | KI#7, New Sol: Enhanced QoS Sustainability Analytics. |
pCR revision of S2-2202025 |
Tencent, Tencent Cloud | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203372 | Solution on KI#7: Enhanced QoS Sustainability Analytics. |
pCR revision of S2-2202125 |
Huawei, HiSilicon | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203373 | Solution for KI#8 to support Federated Learning between NWDAFs. |
pCR revision of S2-2202041 |
Qualcomm Incorporated | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203374 | Solution for KI #8: Federated Learning Group creation. |
pCR revision of S2-2202318 |
Samsung | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203375 | Solution for KI#8: Support of federated learning for model training. |
pCR revision of S2-2202427 |
Lenovo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203376 | New Solution on Horizontal Federated Learning among Multiple NWDAFs Instances. |
pCR revision of S2-2202633 |
China Mobile | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203377 | KI#9, New Sol: Outdoors Advertisement use case with finer granularity location information. |
pCR revision of S2-2202388 |
Vivo | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203378 | TR 23.700-81: KI#9 - Solution for finer granularity of location information. |
pCR revision of S2-2202694 |
TOYOTA MOTOR CORPORATION | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
S2-2203379 | KI#9: New solution on relative proximity analytics. |
pCR revision of S2-2202179 |
Samsung | 23.700-81 0.1.0 | FS_eNA_Ph3 | Rel-18 |
S2-150-e AI: 9.23 |
approved | [WTS] [JSN] |
83 documents (0.33122777938843 seconds)