Please enter the search related information in the fields below. Partial information works, e.g. "SP-21
" in the "tdoc" field lists all TSG SA documents from 2021. Regular expressions mostly work in all fields (e.g. "2[34].501
" in the "Spec" field lists all documents related to 23.501 and 24.501. Capitalization is disregarded, i.e. "3GPP
" gives the same results as "3gpp
".
Download results in JSON format
tdoc | Title | Type / Revs | Source | Spec / CR | S/WID | Release | Meeting | Status | Links |
---|---|---|---|---|---|---|---|---|---|
S2-2401924 | Solution to key issue 3: PCC enhancements based on service experience analysis . | pCR | OPPO | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401925 | Solution to key issue 4: Signalling storm detection and mitigation based on O&M data. | pCR | OPPO | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401926 | [DRAFT] LS to SA WG5 on NAS signalling congestion/signalling storm |
LS out LS To: SA WG5 |
OPPO Beijing | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] | |
S2-2401966 | KI#1: New solution for Direct AIML based Positioning in LMF collocated with AnLF |
pCR revised to S2-2403059 |
vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2401967 | KI#2: New solution for Vertical Federated Learning between NWDAF and AF without coordinator | pCR | vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401968 | WT2: New Use Case for Vertical Federated Learning. |
pCR revision of S2-2400312 revised to S2-2403052 |
Samsung, OPPO, ZTE, Futurewei, Lenovo, ETRI, NTT Docomo, SK Telecom | 23.700-84 0.0.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2401969 | KI#3, New Sol: QoS/policy enhancements assisted by NWDAF. | pCR | Samsung, SK Telecom | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401970 | KI#1: New Solution on LMF Support for AI/ML Direct Positioning. |
pCR revised to S2-2403060 |
Samsung | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2401971 | KI#2: New Solution on NWDAF Support for VFL. | pCR | Samsung | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401974 | Solution for KI#3: Framework for supporting policy recommendations. | pCR | Lenovo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401985 | KI#1: New Solution for NF Registration and Discovery Enhancement for AI/ML positioning. | pCR | Vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401986 | KI#2: New Solution for NF Registration and Discovery Enhancement for supporting VFL. | pCR | Vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401987 | KI#2: Terminologies definition for VFL. |
pCR revised to S2-2403058 |
Vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2401988 | Definitions of VFL server and VFL client. | pCR | ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401989 | Definitions of VFL and HFL. | pCR | ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401990 | Architectural assumptions. | pCR | ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401991 | Solution about LMF-side model training and inference. |
pCR revised to S2-2403061 |
ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2401992 | TR 23.700-84: KI#1 Solution about LMF AI capability report to NRF and LMF selection. | pCR | ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401993 | Solution about 2-sides VFL training process. | pCR | ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2401994 | TR 23.700-84: KI#2 Solution about 2-sides VFL inference process. | pCR | ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402003 | Data collection procedure for model training of AI/ML based positioning. | pCR | Vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402012 | New solution: NWDAF-assisted policy control for network abnormal behaviours mitigation. | pCR | KPN N.V. | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402023 | Solution for KI#3 Use Case 1: NWDAF Policy Decisions Analytics. | pCR | Nokia, Nokia Shanghai Bell | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402024 | Solution for KI#1: Data Collection Framework for Direct AI/ML positioning. |
pCR revised to S2-2403062 |
Lenovo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2402025 | Solution for KI#1: ML Model Framework for Direct AI/ML positioning . | pCR | Lenovo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402026 | Solution for KI#4: Flexible analytics design to support multiple 'signalling storm' scenarios. | pCR | Lenovo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402063 | New Use Case for WT#2: VFL between NWDAFs. |
pCR revision of S2-2400804 revised to S2-2403053 |
Huawei, HiSilicon | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2402064 | KI#2, New Solution for VFL-based ML training. | pCR | Huawei, HiSilicon | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402104 | TR 23.700-84: New Solution for KI#2 Sample/Feature alignment and general training procedure for the VFL. | pCR | OPPO | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402105 | TR 23.700-84: New Solution for KI#2 General inference procedure for the VFL. | pCR | OPPO | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402106 | TR 23.700-84: KI#2 - VFL terminology definition. | pCR | OPPO | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402107 | TR 23.700-84: New Solution for KI#1 LMF selection to support the LMF-sided direct AI/ML positioning. |
pCR revised to S2-2403063 |
OPPO | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2402117 | 23.700-84: KI#1: Solution about LMF based ML model training and Inference. |
pCR revised to S2-2403064 |
Qualcomm Incorporated | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2402156 | KI#2: New Solution for support registration and discovery enhancement for Vertical Federated Learning. | pCR | KDDI | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402157 | KI#2: New Solution for support Vertical Federated Learning model training between NWDAF and AF. | pCR | KDDI | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402158 | KI#2: New Solution for support Vertical Federated Learning Inference between NWDAF and AF . | pCR | KDDI | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402165 | Solution (KI#3): Enhancements to reduce iterations in determining QoS parameters assisted by NWDAF. | pCR | ETRI | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402181 | KI#4: New Sol: NWDAF analytics for signalling storm prediction. | pCR | NTT DOCOMO | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402186 | Solution (KI#3): Enhancement to evaluate NWDAF-assisted policy control and QoS recommendation. | pCR | ETRI | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402192 | KI#4, New Sol: NWDAF Assisted Network Abnormal Behaviour Mitigation and Prevention . | pCR | Samsung | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402205 | Solution for KI#2: Supporting alignment of samples for model training using VFL. | pCR | Lenovo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402213 | Use case for observed service experience analytics based on VFL. |
pCR revision of S2-2401068 revised to S2-2403054 |
China Mobile, KDDI, Lenovo, vivo, Huawei, OPPO, NTT DOCOMO, Apple, ETRI, Ericsson, KDDI | 23.700-84 0.0.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2402215 | General procedure for Vertical Federated Learning between NWDAF(s) and AF(s) . | pCR | China Mobile | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402221 | New Solution for Supporting AI/ML based positioning for LMF-side model. | pCR | Huawei, HiSilicon | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402222 | Update of KI#1. | pCR | Huawei, HiSilicon | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
merged | [WTS] [JSN] |
S2-2402223 | NWDAF-assisted policy control with Recommendation logical function. | pCR | Huawei, HiSilicon | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402225 | New Solution on NWDAF-assisted LMF trains model and monitor model performance for Direct AI/ML based positioning. | pCR | China Mobile | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402226 | New Solution on NWDAF-assisted for 5GC handling of abnormal network behaviors. | pCR | China Mobile | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402239 | KI#1 new solution of Direct AI/ML based positioning with NWDAF assistance. | pCR | CATT | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402240 | KI#3 new solution of NWDAF assisted QoS policy generation. | pCR | CATT | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402250 | Terminology proposals for VFL. | pCR | Samsung | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402264 | KI#3 New solution PCF as RL Agent and NWDAF as Interpreter enhancement. | pCR | Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402266 | KI#1 Updates to KI#1 on Enhancements to LCS to support Direct AI/ML based Positioning. | pCR | Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
merged | [WTS] [JSN] |
S2-2402267 | KI#1, New Solution LMF provides AIML based positioning . | pCR | Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402268 | KI#2, new Solution: Cross domain VFL involving NWDAF and AF. | pCR | Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
merged | [WTS] [JSN] |
S2-2402269 | (KI#4) Solution for NWDAF enhancements to support network abnormal behaviours (i.e. Signalling storm) mitigation and prevention. | pCR | Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402270 | (KI#3) Changes in the use case #1. |
pCR revised to S2-2403056 |
Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2402271 | (KI#4) Use case for NWDAF enhancements to support network abnormal behaviours (i.e. Signalling storm) mitigation and prevention. |
pCR revised to S2-2403057 |
Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2402297 | EN removal from architectural assumptions and requirements. |
pCR revised to S2-2403049 |
Samsung | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2402356 | [DRAFT] LS on data collection to enable ML model training and inference in 5GC for Direct AI/ML based positioning |
LS out LS To: RAN WG1, RAN WG2 |
Intel | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] | ||
S2-2402365 | Solution (KI#2): How to support Vertical Federated Learning between NWDAF and AF. | pCR | ETRI | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402368 | KI#1:Solution for Enhancements to LCS to support Direct AI/ML based Positioning supported by NWDAF. | pCR | Intel | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402435 | New Solution for KI#1: Model training and obtaining for AI/ML based positioning. | pCR | China Telecom | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402436 | New Solution for KI#4: Registration signalling analytics to support detection and prevention of signalling storm. | pCR | China Telecom | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402462 | Solution (KI#4): New Analytics of NAS-Level Congestion Control for Network Abnormal Behaviour. | pCR | ETRI | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402508 | KI#4, New Solution: NWDAF Assisted Detection and Mitigation of Signalling Storm. | pCR | Huawei, HiSilicon | 23.700-84 18.3.0 | DUMMY | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402542 | New solution for KI#2: Procedure for VFL initiation and preparation. | pCR | Futurewei | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402658 | 23.700-84: Architecture Assumptions and Requirements Editor s note. | pCR | MediaTek Inc. (Rapporteur), vivo (Rapporteur) | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
merged | [WTS] [JSN] |
S2-2402659 | 23.700-84: Mapping of Key Issues to Use Cases. |
pCR revised to S2-2403050 |
MediaTek Inc. (Rapporteur), vivo (Rapporteur) | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2402660 | New Sol: NWDAF assisted PDU Set assistance information. | pCR | MediaTek Inc. | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402666 | BDT Policy Recommendations. | pCR | Lenovo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402731 | Miscellaneous Corrections of Key Issues. |
pCR revised to S2-2403051 |
Vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2402732 | KI#4: New Solution SBA signaling storm mitigation and prevention based on NWDAF detection and prediction. | pCR | Vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402733 | KI#4: New Solution NAS signaling storm mitigation and prevention based on NWDAF detection and prediction. | pCR | Vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402750 | KI#4, New Solution: NWDAF-assisted Network Abnormal Behaviour Mitigation and Prevention. | pCR | SK Telecom | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402762 | KI#4, New Sol: NWDAF Assisted Network Abnormal Behaviour Mitigation and Prevention. | pCR | Samsung | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402829 | WT#2: New Use Case for Vertical Federated Learning inside 5GC. | pCR | Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
merged | [WTS] [JSN] |
S2-2402937 | KI#1, New Solution, Handling of Direct AIML Positioning . | pCR | InterDigital Inc. | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402953 | New solution for KI#1: Support Direct AI/ML based Positioning with train entity in NWDAF . | pCR | Xiaomi | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402987 | KI#2, New Solution, Support for VFL in 5GC. | pCR | InterDigital Inc. | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
not treated | [WTS] [JSN] |
S2-2402990 | New use case for Vertical Federated Learning . |
pCR revised to S2-2403055 |
InterDigital Inc. | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403049 | EN removal from architectural assumptions and requirements. |
pCR revision of S2-2402297 |
Samsung | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403050 | 23.700-84: Mapping of Key Issues to Use Cases. |
pCR revision of S2-2402659 revised to S2-2403337 |
MediaTek Inc. (Rapporteur), vivo (Rapporteur), Ericsson, Samsung, InterDigital | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403051 | Miscellaneous Corrections of Key Issues. |
pCR revision of S2-2402731 revised to S2-2403336 |
Vivo, Huawei, HiSilicon, Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403052 | WT2: New Use Case for Vertical Federated Learning. |
pCR revision of S2-2401968 revised to S2-2403338 |
Samsung, OPPO, ZTE, Futurewei, Lenovo, ETRI, NTT Docomo, SK Telecom, Huawei, KDDI | 23.700-84 0.0.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403053 | New Use Case for WT#2: VFL between NWDAFs. |
pCR revision of S2-2402063 |
Huawei, HiSilicon | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
noted | [WTS] [JSN] |
S2-2403054 | Use case for observed service experience analytics based on VFL. |
pCR revision of S2-2402213 revised to S2-2403339 |
China Mobile, KDDI, Lenovo, vivo, Huawei, OPPO, NTT DOCOMO, Apple, ETRI, Ericsson, KDDI, Nokia | 23.700-84 0.0.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403055 | New use case for Vertical Federated Learning . |
pCR revision of S2-2402990 |
InterDigital Inc. | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
noted | [WTS] [JSN] |
S2-2403056 | (KI#3) Changes in the use case #1. |
pCR revision of S2-2402270 revised to S2-2403341 |
Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403057 | (KI#4) Use case for NWDAF enhancements to support network abnormal behaviours (i.e. Signalling storm) mitigation and prevention. |
pCR revision of S2-2402271 revised to S2-2403342 |
Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403058 | KI#2: Terminologies definition for VFL. |
pCR revision of S2-2401987 revised to S2-2403340 |
Vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403059 | KI#1: New solution for Direct AIML based Positioning in LMF collocated with AnLF |
pCR revision of S2-2401966 revised to S2-2403343 |
vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403060 | KI#1: New Solution on LMF Support for AI/ML Direct Positioning. |
pCR revision of S2-2401970 revised to S2-2403344 |
Samsung | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403061 | Solution about LMF-side model training and inference. |
pCR revision of S2-2401991 revised to S2-2403345 |
ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403062 | Solution for KI#1: Data Collection Framework for Direct AI/ML positioning. |
pCR revision of S2-2402024 revised to S2-2403346 |
Lenovo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403063 | TR 23.700-84: New Solution for KI#1 LMF selection to support the LMF-sided direct AI/ML positioning. |
pCR revision of S2-2402107 revised to S2-2403347 |
OPPO, ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403064 | 23.700-84: KI#1: Solution about LMF based ML model training and Inference. |
pCR revision of S2-2402117 |
Qualcomm Incorporated, Huawei | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403336 | Miscellaneous Corrections of Key Issues. |
pCR revision of S2-2403051 |
Vivo, Huawei, HiSilicon, Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403337 | 23.700-84: Mapping of Key Issues to Use Cases. |
pCR revision of S2-2403050 |
MediaTek Inc. (Rapporteur), vivo (Rapporteur), Ericsson, Samsung, InterDigital, Nokia | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403338 | WT2: New Use Case for Vertical Federated Learning. |
pCR revision of S2-2403052 revised to S2-2403590 |
Samsung, OPPO, ZTE, Futurewei, Lenovo, ETRI, NTT Docomo, SK Telecom, Huawei, KDDI | 23.700-84 0.0.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403339 | Use case for observed service experience analytics based on VFL. |
pCR revision of S2-2403054 revised to S2-2403591 |
China Mobile, KDDI, Lenovo, vivo, Huawei, OPPO, NTT DOCOMO, Apple, ETRI, Ericsson, KDDI, Nokia | 23.700-84 0.0.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403340 | KI#2: Terminologies definition for VFL. |
pCR revision of S2-2403058 revised to S2-2403592 |
Vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403341 | (KI#3) Changes in the use case #1. |
pCR revision of S2-2403056 |
Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403342 | (KI#4) Use case for NWDAF enhancements to support network abnormal behaviours (i.e. Signalling storm) mitigation and prevention. |
pCR revision of S2-2403057 revised to S2-2403593 |
Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403343 | KI#1: New Solution Direct AI/ML based Positioning in LMF collocated with AnLF. |
pCR revision of S2-2403059 revised to S2-2403594 |
Vivo, Intel, ZTE, Lenovo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403344 | KI#1: New Solution on LMF Support for AI/ML Direct Positioning. |
pCR revision of S2-2403060 revised to S2-2403595 |
Samsung | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403345 | Solution about LMF-side model training and inference. |
pCR revision of S2-2403061 revised to S2-2403596 |
ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403346 | Solution for KI#1: Data Collection Framework for Direct AI/ML positioning. |
pCR revision of S2-2403062 revised to S2-2403597 |
Lenovo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
revised | [WTS] [JSN] |
S2-2403347 | TR 23.700-84: New Solution for KI#1 LMF selection to support the LMF-sided direct AI/ML positioning. |
pCR revision of S2-2403063 |
OPPO, ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403590 | WT2: New Use Case for Vertical Federated Learning. |
pCR revision of S2-2403338 |
Samsung, OPPO, ZTE, Futurewei, Lenovo, ETRI, NTT Docomo, SK Telecom, Huawei, KDDI, Ericsson | 23.700-84 0.0.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403591 | Use case for observed service experience analytics based on VFL. |
pCR revision of S2-2403339 |
China Mobile, KDDI, Lenovo, vivo, Huawei, OPPO, NTT DOCOMO, Apple, ETRI, Ericsson, Nokia, Samsung, ZTE, Interdigital | 23.700-84 0.0.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403592 | KI#2: Terminologies definition for VFL. |
pCR revision of S2-2403340 |
Vivo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403593 | (KI#4) Use case for NWDAF enhancements to support network abnormal behaviours (i.e. Signalling storm) mitigation and prevention. |
pCR revision of S2-2403342 |
Ericsson | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403594 | KI#1: New Solution Direct AI/ML based Positioning in LMF collocated with AnLF. |
pCR revision of S2-2403343 |
Vivo, Intel, ZTE, Lenovo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403595 | KI#1: New Solution on LMF Support for AI/ML Direct Positioning. |
pCR revision of S2-2403344 |
Samsung | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403596 | Solution about LMF-side model training and inference. |
pCR revision of S2-2403345 |
ZTE | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
S2-2403597 | Solution for KI#1: Data Collection Framework for Direct AI/ML positioning. |
pCR revision of S2-2403346 |
Lenovo | 23.700-84 0.1.0 | FS_AIML_CN | Rel-19 |
S2-161 AI: 19.15 |
approved | [WTS] [JSN] |
117 documents (0.27493500709534 seconds)